منابع مشابه
Pseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملpseudo ricci symmetric real hypersurfaces of a complex projective space
pseudo ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo ricci symmetric real hypersurfaces of the complex projective space cpn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملCertain Conditions on the Ricci Tensor of Real Hypersurfaces in Quaternionic Projective Spaces
The purpose of this paper is to classify real hypersurfaces of quaternionic projective spaces whose Ricci tensor satisfy a pair of conditions on the maximal quaternionic distribution D? = Span fU1; U2; U3g. x0. Introduction Throughout this paper let us denote by M a connected real hypersurface in a quaternionic projective space QP, m=3, endowed with the metric g of constant quaternionic section...
متن کاملThe *-Ricci tensor for hypersurfaces in CP and CH
We update and refine the work of T. Hamada concerning *-Einstein hypersurfaces in CPn and CHn. We also address existence questions using the methods of moving frames and exterior differential systems.
متن کاملReal Hypersurfaces of Cp with Non-negative Ricci Curvature
We prove the non-existence of Levi flat compact real hypersurfaces without boundary in CPn, n > 1, with non-negative totally real Ricci curvature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2016
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2016.281.103